May 13, 2020

Happy Wednesday, y’all! Before we get to today’s papers, I wanted to let everyone know about a webinar happening on June 3rd at 12:00 PM E.T. called “Unraveling the link between the gut microbiome, human health, and disease.” Tomoya Yamashita, M.D., Ph.D. from Kobe University Graduate School of Medicine and Meredith Hullar, Ph.D. from the Fred Hutchinson Cancer Research Center will both be speaking. If you’re interested you can register here.

Now onto the highlights! We have some super interesting research to share with you today including an examination of the efficacy of transplanting the human gut microbiota into mice and its impact on studying immunological responses; evidence that early-life intestinal colonizers may influence brain development; and a new tool, pepFUNK, which uses a peptide-centric approach to identify KEGG pathways in metaproteomic datasets. Enjoy!

General microbiome
Human Microbiota-Transplanted C57BL/6 Mice and Offspring Display Reduced Establishment of Key Bacteria and Reduced Immune Stimulation Compared to Mouse Microbiota-Transplantation. Lundberg, R. et al. Scientific Reports.

Review: The role of the microbiome in the neurobiology of social behaviour. Sarkar, A. et al. Biological Reviews.

Pregnancy and early life
Neonatal diet alters fecal microbiota and metabolome profiles at different ages in infants fed breast milk or formula. Brink, L.R. et al. The American Journal of Clinical Nutrition.

Investigating Bifidobacteria and Human Milk Oligosaccharide Composition of Lactating Mothers. Lugli, A.G. et al. FEMS Microbiology Ecology.

Human respiratory microbiome
Bioorthogonal Non-Canonical Amino Acid Tagging Reveals Translationally Active Subpopulations of the Cystic Fibrosis Lung Microbiota. Valentini, T.D. et al. Nature Communications.

Human gut microbiome
Longitudinal Analysis of Serum Cytokine Levels and Gut Microbial Abundance Links IL-17/IL-22 With Clostridia and Insulin Sensitivity in Humans. Zhou, X. et al. Diabetes.

Berberine and Its Structural Analogs Have Differing Effects on Functional Profiles of Individual Gut Microbiomes. Li, L. et al. Gut Microbes.

Animal experiments
Developmental Signatures of Microbiota-Derived Metabolites in the Mouse Brain. Swann, J.R. et al. Metabolites.

Bifidobacteria Shape Host Neural Circuits During Postnatal Development by Promoting Synapse Formation and Microglial Function. Luck, B. et al. Scientific Reports.

Glycerol Monolaurate, an Analogue to a Factor Secreted by Lactobacillus, Is Virucidal Against Enveloped Viruses, Including HIV-1. Welch, J.L. et al. mBio.

Gut Microbiome Communication With Bone Marrow Regulates Susceptibility to Amebiasis. Burgess, S.L. et al. The Journal of Clinical Investigation.

The Protective Effects of 2′-Fucosyllactose Against E. Coli O157 Infection Are Mediated by the Regulation of Gut Microbiota and the Inhibition of Pathogen Adhesion. Wang Y. et al. Nutrients.

Capsaicin Improves Glucose Homeostasis by Enhancing Glucagon-Like peptide-1 Secretion Through the Regulation of Bile Acid Metabolism via the Remodeling of the Gut Microbiota in Male Mice. Hui, S. et al. FASEB Journal.

Microbiota-Induced Type I Interferons Instruct a Poised Basal State of Dendritic Cells. Schaupp L. et al. Cell.

Intratumoral Accumulation of Gut Microbiota Facilitates CD47-based Immunotherapy via STING Signaling. Shi, Y. et al. Journal of Experimental Medicine.

Animal microbiome
Housefly (Musca domestica L.) associated microbiota across different life stages. de Jonge, N. et al. Scientific Reports.

Honey-bee–associated prokaryotic viral communities reveal wide viral diversity and a profound metabolic coding potential. Deboutte, W. et al. PNAS.

Bayesian Modeling Reveals Host Genetics Associated With Rumen Microbiota Jointly Influence Methane Emission in Dairy Cows. Zhang, Q. et al. ISME Journal.

Review: The role of the gut microbiome in sustainable teleost aquaculture. Perry, W.B. et al. Proceedings of the Royal Society B.

Interactions between social groups of colobus monkeys (Colobus vellerosus) explain similarities in their gut microbiomes. Wikberg E.C. Animal Behaviour.

Plant, root, and soil microbiome
Global Warming Shifts the Composition of the Abundant Bacterial Phyllosphere Microbiota as Indicated by a Cultivation Dependent and Independent Study of the Grassland Phyllosphere of a Long-Term Warming Field-Experiment. Aydogan, E.L. et al. FEMS Microbiology Ecology.

Probiotics / prebiotics
A Human-Origin Probiotic Cocktail Ameliorates Aging-Related Leaky Gut and Inflammation via Modulating the Microbiota/Taurine/Tight Junction Axis. Ahmadi, S. et al. JCI Insight.

Bioinformatics
SHOGUN: A Modular, Accurate, and Scalable Framework for Microbiome Quantification. Hillmann, B. et al. Bioinformatics.

pepFunk: A Tool for Peptide-Centric Functional Analysis of Metaproteomic Human Gut Microbiome Studies. Simopoulos, C.M.A. et al. Bioinformatics.

Microbes in the news
Mapping the Microbiome in Saliva of COVID-19 Patients.

Inside the Belly of the Horse – Doctoral candidate Alexa Johnson goes inside the gut to investigate equine health.

April 7, 2020

Hi everyone! This is my first contribution to the daily digest, and I’ll follow others’ lead by starting with the latest preprints concerning Covid-19. Away from the ongoing pandemic, some of the highlights include a look at how commensal gut microbes interact with pathogens, and an insight into deep sea oceanic crust microbiomes.

It seems to be a relatively quiet day today, so I’ve included an article from the University of Bristol which looks at how nanoscopic pillars on the surface of some insect wings protect them against bacteria. Perhaps only loosely a microbiome paper, but it’s worth a read for its electron microscopy alone!

COVID-19

Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor – Lan et al. – Nature

Preprint: Atazanavir inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production – Fintelman-Rodrigues et al.

Preprint: Amantadine disrupts lysosomal gene expression; potential therapy for COVID19 – Smieszek et al.

Preprint: Potent Antiviral Activities of Type I Interferons to SARS-CoV-2 Infection – Mantlo et al.

Human gut microbiome

Dissecting individual pathogen-commensal interactions within a complex gut microbiota community – Hassall and Unnikrishnan

Animal microbiome

Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress – Jenkins et al. – Nature Communications

Water and extremophile microbiome

Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust – Suzuki et al.Communications Biology

Food microbiology

How does the microbiome impact pig health? – Sarah Mikesell – The Pig Site

Microbes in the news

Lifestyle trumps geography in determining makeup of gut microbiomeEurekAlert!

Microbes on the market

Gilead taps Second Genome for microbiome biomarker help in a potential $1.5B deal – Connor Hale – FierceBiotech.com